mms端口_mmap端口扫描状态

hacker|
236

IO模型及select,poll,epoll和kqueue的区别

(一)首先,介绍几种常见的I/O模型及其区别,如下:

blocking I/O

nonblocking I/O

I/O multiplexing (select and poll)

signal driven I/O (SIGIO)

asynchronous I/O (the POSIX aio_functions)—————异步IO模型最大的特点是 完成后发回通知。

阻塞与否,取决于实现IO交换的方式。

异步阻塞是基于select,select函数本身的实现方式是阻塞的,而采用select函数有个好处就是它可以同时监听多个文件句柄.

异步非阻塞直接在完成后通知,用户进程只需要发起一个IO操作然后立即返回,等IO操作真正的完成以后,应用程序会得到IO操作完成的通知,此时用户进程只需要对数据进行处理就好了,不需要进行实际的IO读写操作,因为真正的IO读取或者写入操作已经由内核完成了。

1 blocking I/O

这个不用多解释吧,阻塞套接字。下图是它调用过程的图示:

重点解释下上图,下面例子都会讲到。首先application调用 recvfrom()转入kernel,注意kernel有2个过程,wait for data和copy data from kernel to user。直到最后copy complete后,recvfrom()才返回。此过程一直是阻塞的。

2 nonblocking I/O:

与blocking I/O对立的,非阻塞套接字,调用过程图如下:

可以看见,如果直接操作它,那就是个轮询。。直到内核缓冲区有数据。

3 I/O multiplexing (select and poll)

最常见的I/O复用模型,select。

select先阻塞,有活动套接字才返回。与blocking I/O相比,select会有两次系统调用,但是select能处理多个套接字。

4 signal driven I/O (SIGIO)

只有UNIX系统支持,感兴趣的课查阅相关资料

与I/O multiplexing (select and poll)相比,它的优势是,免去了select的阻塞与轮询,当有活跃套接字时,由注册的handler处理。

5 asynchronous I/O (the POSIX aio_functions)

很少有*nix系统支持,windows的IOCP则是此模型

完全异步的I/O复用机制,因为纵观上面其它四种模型,至少都会在由kernel copy data to appliction时阻塞。而该模型是当copy完成后才通知application,可见是纯异步的。好像只有windows的完成端口是这个模型,效率也很出色。

6 下面是以上五种模型的比较

可以看出,越往后,阻塞越少,理论上效率也是最优。

=====================分割线==================================

5种模型的比较比较清晰了,剩下的就是把select,epoll,iocp,kqueue按号入座那就OK了。

select和iocp分别对应第3种与第5种模型,那么epoll与kqueue呢?其实也于select属于同一种模型,只是更高级一些,可以看作有了第4种模型的某些特性,如callback机制。

为什么epoll,kqueue比select高级?

答案是,他们无轮询。因为他们用callback取代了。想想看,当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。

windows or *nix (IOCP or kqueue/epoll)?

诚然,Windows的IOCP非常出色,目前很少有支持asynchronous I/O的系统,但是由于其系统本身的局限性,大型服务器还是在UNIX下。而且正如上面所述,kqueue/epoll 与 IOCP相比,就是多了一层从内核copy数据到应用层的阻塞,从而不能算作asynchronous I/O类。但是,这层小小的阻塞无足轻重,kqueue与epoll已经做得很优秀了。

提供一致的接口,IO Design Patterns

实际上,不管是哪种模型,都可以抽象一层出来,提供一致的接口,广为人知的有ACE,Libevent(基于reactor模式)这些,他们都是跨平台的,而且他们自动选择最优的I/O复用机制,用户只需调用接口即可。说到这里又得说说2个设计模式,Reactor and Proactor。见:Reactor模式--VS--Proactor模式。Libevent是Reactor模型,ACE提供Proactor模型。实际都是对各种I/O复用机制的封装。

Java nio包是什么I/O机制?

现在可以确定,目前的java本质是select()模型,可以检查/jre/bin/nio.dll得知。至于java服务器为什么效率还不错。。我也不得而知,可能是设计得比较好吧。。-_-。

=====================分割线==================================

总结一些重点:

只有IOCP是asynchronous I/O,其他机制或多或少都会有一点阻塞。

select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善

epoll, kqueue、select是Reacor模式,IOCP是Proactor模式。

java nio包是select模型。。

(二)epoll 与select的区别

1. 使用多进程或者多线程,但是这种方法会造成程序的复杂,而且对与进程与线程的创建维护也需要很多的开销。(Apache服务器是用的子进程的方式,优点可以隔离用户) (同步阻塞IO)

2.一种较好的方式为I/O多路转接(I/O multiplexing)(貌似也翻译多路复用),先构造一张有关描述符的列表(epoll中为队列),然后调用一个函数,直到这些描述符中的一个准备好时才返回,返回时告诉进程哪些I/O就绪。select和epoll这两个机制都是多路I/O机制的解决方案,select为POSIX标准中的,而epoll为Linux所特有的。

区别(epoll相对select优点)主要有三:

1.select的句柄数目受限,在linux/posix_types.h头文件有这样的声明:#define __FD_SETSIZE 1024 表示select最多同时监听1024个fd。而epoll没有,它的限制是最大的打开文件句柄数目。

2.epoll的最大好处是不会随着FD的数目增长而降低效率,在selec中采用轮询处理,其中的数据结构类似一个数组的数据结构,而epoll是维护一个队列,直接看队列是不是空就可以了。epoll只会对"活跃"的socket进行操作---这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。那么,只有"活跃"的socket才会主动的去调用 callback函数(把这个句柄加入队列),其他idle状态句柄则不会,在这点上,epoll实现了一个"伪"AIO。但是如果绝大部分的I/O都是“活跃的”,每个I/O端口使用率很高的话,epoll效率不一定比select高(可能是要维护队列复杂)。

3.使用mmap加速内核与用户空间的消息传递。无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝就很重要,在这点上,epoll是通过内核于用户空间mmap同一块内存实现的。

关于epoll工作模式ET,LT

epoll有两种工作方式

ET:Edge Triggered,边缘触发。仅当状态发生变化时才会通知,epoll_wait返回。换句话,就是对于一个事件,只通知一次。且只支持非阻塞的socket。

LT:Level Triggered,电平触发(默认工作方式)。类似select/poll,只要还有没有处理的事件就会一直通知,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll.支持阻塞和不阻塞的socket。

三 Linux并发网络编程模型

1 Apache 模型,简称 PPC ( Process Per Connection ,):为每个连接分配一个进程。主机分配给每个连接的时间和空间上代价较大,并且随着连接的增多,大量进程间切换开销也增长了。很难应对大量的客户并发连接。

2 TPC 模型( Thread Per Connection ):每个连接一个线程。和PCC类似。

3 select 模型:I/O多路复用技术。

.1 每个连接对应一个描述。select模型受限于 FD_SETSIZE即进程最大打开的描述符数linux2.6.35为1024,实际上linux每个进程所能打开描数字的个数仅受限于内存大小,然而在设计select的系统调用时,却是参考FD_SETSIZE的值。可通过重新编译内核更改此值,但不能根治此问题,对于百万级的用户连接请求 即便增加相应 进程数, 仍显得杯水车薪呀。

.2select每次都会扫描一个文件描述符的集合,这个集合的大小是作为select第一个参数传入的值。但是每个进程所能打开文件描述符若是增加了 ,扫描的效率也将减小。

.3内核到用户空间,采用内存复制传递文件描述上发生的信息。

4 poll 模型:I/O多路复用技术。poll模型将不会受限于FD_SETSIZE,因为内核所扫描的文件 描述符集合的大小是由用户指定的,即poll的第二个参数。但仍有扫描效率和内存拷贝问题。

5 pselect模型:I/O多路复用技术。同select。

6 epoll模型:

.1)无文件描述字大小限制仅与内存大小相关

.2)epoll返回时已经明确的知道哪个socket fd发生了什么事件,不用像select那样再一个个比对。

.3)内核到用户空间采用共享内存方式,传递消息。

四 :FAQ

1、单个epoll并不能解决所有问题,特别是你的每个操作都比较费时的时候,因为epoll是串行处理的。 所以你有还是必要建立线程池来发挥更大的效能。

2、如果fd被注册到两个epoll中时,如果有时间发生则两个epoll都会触发事件。

3、如果注册到epoll中的fd被关闭,则其会自动被清除出epoll监听列表。

4、如果多个事件同时触发epoll,则多个事件会被联合在一起返回。

5、epoll_wait会一直监听epollhup事件发生,所以其不需要添加到events中。

6、为了避免大数据量io时,et模式下只处理一个fd,其他fd被饿死的情况发生。linux建议可以在fd联系到的结构中增加ready位,然后epoll_wait触发事件之后仅将其置位为ready模式,然后在下边轮询ready fd列表。

select、pool、epoll重点总结

select,poll,epoll都是IO多路复用的机制。I/O多路复用就是通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。

但select,poll,epoll本质上都是同步I/O ,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。

I/O复用模型会用到select、poll、epoll函数:对一个IO端口,两次调用,两次返回,比阻塞IO并没有什么优越性。但关键是 能实现同时对多个IO端口进行监听。

这几个函数也会使进程阻塞,但是和阻塞I/O所不同的是,这几个函数 可以同时阻塞多个I/O操作。而且可以同时对多个读操作,多个写操作的I/O函数进行检测,直到有数据可读或可写时,才真正调用I/O操作函数。

当一个客户端连接上服务器时,服务器就将其连接的fd加入fd_set集合,等到这个连接准备好读或写的时候,就通知程序进行IO操作,与客户端进行数据通信。大部分Unix/Linux 都支持 select 函数,该函数用于探测多个文件描述符的状态变化。

(1) 创建所关注的事件的描述符集合(fd_set),对于一个描述符,可以关注其上面的读(read)、写(write)、异常(exception)事件,所以通常,要创建三个fd_set,一个用来收集关注读事件的描述符,一个用来收集关注写事件的描述符,另外一个用来收集关注异常事件的描述符集合。

(2)调用select()等待事件发生。这里需要注意的一点是,select的阻塞与是否设置非阻塞I/O是没有关系的。

(3) 轮询所有fd_set中的每一个fd,检查是否有相应的事件发生,如果有,就进行处理。

优点:

相比其他模型,使用 select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。

缺点:

(1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大!!!(复制大量句柄数据结构,产生巨大的开销 )。

(2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大!!!(消耗大量时间去轮询各个句柄,才能发现哪些句柄发生了事件)。

(3)单个进程能够监视的文件描述符的数量存在最大限制,32位机默认是1024。

(4)select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程。

(5)该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。

poll库是在linux2.1.23中引入的,windows平台不支持poll。poll本质上和select没有太大区别,都是先创建一个关注事件的描述符的集合,然后再去等待这些事件发生,然后再轮询描述符集合,检查有没有事件发生,如果有,就进行处理。因此,poll有着与select相似的处理流程:

(1)select需要为读、写、异常事件分别创建一个描述符集合,最后轮询的时候,需要分别轮询这三个集合。而poll只需要一个集合,在每个描述符对应的结构上分别设置读、写、异常事件,最后轮询的时候,可以同时检查三种事件。

(2)它没有最大连接数的限制,原因是它是基于链表来存储的。

(1)大量的fd的数组被整体复制于用户态和内核地址空间之间,而不管这样的复制是不是有意义。

(2)poll还有一个特点是“水平触发”,如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。

poll和select,它们的最大的问题就在于效率。它们的处理方式都是创建一个事件列表,然后把这个列表发给内核,返回的时候,再去轮询检查这个列表,这样在描述符比较多的应用中,效率就显得比较低下了。

epoll是一种比较好的做法,它把描述符列表交给内核,一旦有事件发生,内核把发生事件的描述符列表通知给进程,这样就避免了轮询整个描述符列表。

epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就绪态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。

epoll与select和poll的调用接口上的不同:select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注册要监听的事件类型;epoll_wait则是等待事件的产生。

(1)创建一个epoll描述符,调用epoll_create()来完成。epoll_create()有一个整型的参数size,用来告诉内核,要创建一个有size个描述符的事件列表(集合)。

(2)给描述符设置所关注的事件,并把它添加到内核的事件列表中。这里需要调用epoll_ctl()来完成。

(3)等待内核通知事件发生,得到发生事件的描述符的结构列表。该过程由epoll_wait()完成。得到事件列表后,就可以进行事件处理了。

(1)没有最大并发连接的限制,能打开FD的上限远大于1024(1G的内存上能监听约10万个端口);

(2)效率提升。不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数;

即epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,epoll的效率就会远远高于select和poll。

(3)内存拷贝。epoll通过内核和用户空间共享一块内存来实现消息传递的。利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap 减少复制开销。epoll保证了每个fd在整个过程中只会拷贝一次(select,poll每次调用都要把fd集合从用户态往内核态拷贝一次)。

参考链接:

select、poll、epoll总结及ET、LT区别

Kafka 安装教程 + nodejs 连接

1、kafka安装包

2、zookeeper安装包

1、先安装运行zookeeper

2、安装运行kafka

修改下图ip

advertised.listeners=PLAINTEXT://71.24.89.191:9092

这里主要是检测对应的端口是否是打开状态

分别是 zookeeper的默认端口 2181 和 kafka的 9092

检测网址

1、 添加

2、查看所有主题

3、查看主题下所有分区

4、动态 修改主题 分区为12

小伙伴们可以看我另一片文章

Nodejs kafka连接

1、内存不足

这里因为我的机器的内存比较小

OpenJDK 64-Bit Server VM warning: INFO: os::commit_memory(0x00000000e0000000, 536870912, 0) failed; error='Cannot allocate memory' (errno=12)

There is insufficient memory for the Java Runtime Environment to continue.

Native memory allocation (mmap) failed to map 536870912 bytes for committing reserved memory.

我们只需要把kafka启动脚本修改一下就可以了

修改内存为256:

同步与异步,阻塞与非阻塞的区别,以及select,poll和epoll

异步的概念和同步相对。

(1)当一个同步调用发出后,调用者要一直等待返回消息(结果)通知后,才能进行后续的执行;

(2)当一个异步过程调用发出后,调用者不能立刻得到返回消息(结果)。实际处理这个调用的部件在完成后,通过 状态、通知和回调 来通知调用者。

这里提到执行部件和调用者通过三种途径返回结果:状态、通知和回调。使用哪一种通知机制,依赖于执行部件的实现,除非执行部件提供多种选择,否则不受调用者控制。

(A)阻塞调用是指调用结果返回之前,当前线程会被挂起,一直处于等待消息通知,不能够执行其他业务

(B)非阻塞调用是指在不能立刻得到结果之前,该函数不会阻塞当前线程,而会立刻返回

场景比喻:

举个例子,比如我去银行办理业务,可能会有两种方式:

在上面的场景中,如果:

a)如果选择排队(同步),且排队的时候什么都不干(线程被挂起,什么都干不了),是同步阻塞模型;

b)如果选择排队(同步),但是排队的同时做与办银行业务无关的事情,比如抽烟,(线程没有被挂起,还可以干一些其他的事),是同步非阻塞模型;

c)如果选择拿个小票,做在位置上等着叫号(通知),但是坐在位置上什么都不干(线程被挂起,什么都干不了),这是异步阻塞模型;

d)如果选择那个小票,坐在位置上等着叫号(通知),但是坐着的同时还打电话谈生意(线程没有被挂起,还可以干其他事情),这是异步非阻塞模型。

对这四种模型做一个总结:

1:同步阻塞模型,效率最低,即你专心排队,什么都不干。

2:异步阻塞,效率也非常低,即你拿着号等着被叫(通知),但是坐那什么都不干

3:同步非阻塞,效率其实也不高,因为涉及到线程的来回切换。即你在排队的同时打电话或者抽烟,但是你必须时不时得在队伍中挪动。程序需要在排队和打电话这两种动作之间来回切换,系统开销可想而知。

4:异步非阻塞,效率很高,你拿着小票在那坐着等叫号(通知)的同时,打电话谈你的生意。

linux下几个基本概念

1:用户控件和内核空间。 现代操作系统都是采用虚拟存储器,在32位操作系统下,它的寻址空间(虚拟存储空间)为4G(2的32次方)。为了保证用户进程补鞥呢直接操作内核,保证内核的安全,操作系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。对linux操作系统而言,将最高的1G字节空间分给了内核使用,称为内核空间,将较低的3G字节的空间划分为用户空间。

2:进程切换很耗资源 ,为了控制进程的执行,内核必须有能力挂起正在cpu上运行的进程,并恢复以前挂起的某个进程的执行,这种行为叫进程的切换。每次切换,要保存上一个的上下文环境等等,总之记住进程切换很耗资源。

3:文件描述符 :文件描述符在形式上是一个非负整数。实际上,他是一个索引,指向内核为每个进程所维护的该进程打开文件的记录表。当程序打开一个文件时,内核就会向进程返回一个非负整数的文件描述符。但是文件描述符一般在unix,linux系统中才讲。

缓存IO ,大多数系统的默认IO操作都是缓存IO,在linux的缓存IO机制中,操作系统会将IO的数据缓存在系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。 缓存IO的缺点: 数据在传输过程中需要在应用程序和地址空间和内核进行多次数据拷贝操作,这种数据拷贝操作锁带来的cpu以及内存消耗是很大的。

LINUX的IO模型

网络IO的本质是socket的读取。socket在linux系统被抽象为流,故对网络IO的操作可以理解为对流的操作。

对于一次IO访问,比如以read操作为例, 数据会先被拷贝到操作系统内核的缓冲区,然后才会从内核缓冲区拷贝到进程的用户层,即应用程序的地址空间 。故当一个read操作发生时,其实是经历了两个阶段:

1:内核缓冲区的数据就位

2:数据从内核缓冲区拷贝到用户程序地址空间

那么具体到socket io的一次read操来说,这两步分别是:

1:等待网络上的数据分组到达,然后复制到内核缓冲区中

2:数据从内核缓冲区拷贝到用户程序的地址空间(缓冲区)

所以说 网络应用要处理的无非就两个问题:网络IO和数据计算 ,一般来说网络io带来的延迟影响比较大。

网络IO的模型大致有如下几种:

熟悉不? 我们常说的select,poll和epoll就是属于同步模型中多路复用IO的不同实现方法罢了。 下面分别对同步阻塞,同步不阻塞,同步io复用进行说明。

一:同步阻塞

它是最简单也最常用的网络IO模型。linux下默认的socket都是blocking的。

从图中可以看到,用户进程调用recvfrom这个系统调用后,就处于阻塞状态。然后kernel就开始了IO的第一个阶段:数据准备。等第一个阶段准备完成之后,kernel开始第二阶段,将数据从内核缓冲区拷贝到用户程序缓冲区(需要花费一定时间)。然后kernel返回结果(确切的说是recvfrom这个系统调用函数返回结果),用户进程才结束blocking,重新运行起来。

总结 : 同步阻塞模型下,用户程序在kernel执行io的两个阶段都被blocking住了 。但是优点也是因为这个,无延迟能及时返回数据,且程序模型简单。

二:同步非阻塞

同步非阻塞就是隔一会瞄一下的轮询方式。同步非阻塞模式其实是可以看做一小段一小段的同步阻塞模式。

三:IO多路复用

由于同步非阻塞方式需要不断的轮询,光轮询就占据了很大一部分过程,且消耗cpu资源。而这个用户进程可能不止对这个socket的read,可能还有对其他socket的read或者write操作,那人们就想到了一次轮询的时候,不光只查询询一个socket fd,而是在一次轮询下,查询多个任务的socket fd的完成状态,只要有任何一个任务完成,就去处理它。而且,轮询人不是进程的用户态,而是有人帮忙就好了。那么这就是所谓的 IO多路复用 。总所周知的linux下的select,poll和epoll就是这么干的。。。

selelct调用是内核级别的,selelct轮询相比较同步非阻塞模式下的轮询的区别为: 前者可以等待多个socket,能实现同时对多个IO端口的监听 ,当其中任何一个socket数据准备好了,就返回可读。 select或poll调用之后,会阻塞进程 ,与blocking IO 阻塞不用在于,此时的select不是等到所有socket数据达到再处理,而是某个socket数据就会返回给用户进程来处理。

其实select这种相比较同步non-blocking的效果在单个任务的情况下可能还更差一些 ,因为这里调用了select和recvfrom两个system call,而non-blocking只调用了一个recvfrom,但是 用select的优势在于它可以同时处理多个socket fd 。

在io复用模型下,对于每一个socket,一般都设置成non-blocking,但是其实 整个用户进程是一直被block的 ,只不过用户process不是被socket IO给block住,而是被select这个函数block住的。

与多进程多线程技术相比,IO多路复用的最大优势是系统开销小。

一:select

select函数监视多个socket fs,直到有描述符就绪或者超时,函数返回。当select函数返回后,可以通过遍历fdset,来找到就绪的描述符。select的基本流程为:

二:poll

poll本质上跟select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd的状态,如果某个fd的状态为就绪,则将此fd加入到等待队列中并继续遍历。如果遍历完所有的fd后发现没有就绪的,则挂起当前进程,直到设备就绪或者主动超时。被唤醒后它又要再次遍历fd。

特点:

1:poll没有最大连接数限制,因为它是用基于链表来存储的,跟selelct直接监听fd不一样。

2:同样的大量的fd的数组被整体复制与用户态和内核地址空间之间。

3:poll还有一个特点是水平触发:如果报告了fd后没有被处理,则下次poll时还会再次报告该fd。

4:跟select一样,在poll返回后,还是需要通过遍历fdset来获取已经就绪的socket。当fd很多时,效率会线性下降。

三:epoll

epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就绪态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。

没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口)。

效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数;即Epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,Epoll的效率就会远远高于select和poll。

内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销。

聊聊同步、异步、阻塞与非阻塞

聊聊Linux 五种IO模型

聊聊IO多路复用之select、poll、epoll详解

0条大神的评论

发表评论