岩土工程渗流观测用仪器有哪两种_杭州岩土渗透检测试验费用

hacker|
166

拟建杭州市地铁一号线岩土工程问题?

拟建杭州市地铁一号线岩土工程问题有哪些呢,下面中达咨询招投标老师为你解答以供参考。

一、前言

地铁一号线北起余杭区临平镇,沿线经过乔司、彭埠、火车东站、汽车东站、武林广场、延安路、城站路、城站火车路、秋涛路、钱江路、复兴地区、再经钱江四桥跨钱塘江至萧山区,沿北塘路转至市心路,终于蜀山车辆段,全线总长约52km。其中兴隆村站至凤凰城站及萧山区市心路段均为地下线,埋深约在现地表下10~20m;其余均为高架线路或地面线路。其中地下线路部分均为人群密集、建筑物密集、交通繁忙的闹市区。

二、沿线地基土层的构成与特征

杭州市位于杭嘉湖平原与浙西山区交会处的浙北地区,钱塘江下游,京杭运河南端,地理位置为北纬30°15′,东经120°10′。由于地质历史上受多次海侵海退影响,且区内多山,钱塘江又从市内穿过,造成杭州市地貌形态众多,地基土层复杂多变。

就地铁沿线所经过区域,主要为两种地貌形态。一为临钱塘江的冲海积平原,属钱塘江河口相冲海积堆积的粉性土及砂性土地区,由于堆积年代及固结条件不同,性质不一,竖向由松散至中密状变化,厚度一般在20m左右;其下为海陆交互相沉积的淤泥质软土及粘性土;地面下深约40~50m为古钱塘江河床堆积的圆砾层,中密~密实状态,底部基岩埋深一般在地表下50~65m左右。另一种为海陆交互相沉积的粘性土地区,主要集中在杭州老城区即艮山门站至中河路站一带及萧山市心路区段,地层软硬交替,一般上部20m左右均以软粘性土为主,下部基岩埋深约在地面下40~45m左右。

根据大量钻孔资料及原位测试和室内土工试验成果资料显示,杭州市淤泥质软粘土天然含水量一般在30~45%左右,天然孔隙比一般在0.85~1.50左右,双桥静力触探锥尖阻力约为500~800Kpa,压缩模量约为1.5~3.0Mpa,地基承载力fk约为70~80Kpa左右;局部夹有粉土,或呈互层状。软粘土性质类似与上海的淤泥质粘性土。而钱塘江两岸的河口相冲海积形成的粉土、砂性土(主要分布于城东地区),由于堆积年代、沉积环境、固结条件等的差异,其性质变化较大。资料显示,其密实度一般由松散至中密状态变化,含水量一般在23~35%左右,孔隙比约在0.8~1.1左右,双桥静探端阻力一般为2000~9000Kpa,标贯击数一般为8~20击/30cm。颗粒组成以粉粒为主,一般表现为粘质粉土及砂质粉土,为上细下粗,符合一般沉积规律。其压缩模量在6~20Mpa,地基承载力fk约为80~220Kpa。

综上述,地下线路掘进范围内各土层总体特征是:高含水量和大孔隙比、高压缩性、低强度,淤泥质软粘性土具较高灵敏度、弱透水性,粉土、砂性土透水性好,易产生流砂、管涌现象。

三、地下线路掘进过程中可能遇到的岩土工程问题

(一)地基土层的强度问题

掘进范围内地基土主要为饱和粉土、砂土及软粘土,一般均具低强度特性,因此盾构掘进较易。由于粉土、砂土与软粘土的强度等存在差异,及局部地段(如延安路段)在深度15~20m左右存在可塑状粘性土,与上部软粘土差别较大,造成掘进面上存在两种不同强度的地层,掘进过程中容易造成软弱层排土过多过快而引起地层下沉,或造成盾构在线路方向上的偏离。同时,由于低强度特性,隧道掘进时应及时衬砌并采取相应止水措施,以防掘进面地层产生应力释放,产生沉降。杭州软粘土尚存在较高灵敏度特性,故有较明显触变、流变特性,在动力作用下,极易造成土体结构破坏,使强度降低,且土体排水固结需要很长时间,如施工不当,极易造成工后沉降大和不均匀沉降,因此施工过程中须严格控制偏移量,尽量避免蛇曲推进。

(二)地基土层的变形问题

隧道基底土以粉土、淤泥质软土为主,均具低强度,高压缩性等特点,因此必须验算基底土强度和变形。同时,粉土、砂土和软粘土在变形特性上存在差异,其压缩沉降量不同,当隧道在穿越两种地层时,容易在界面附近造成沉降差。再则,两类地基土的固结特性也存在明显差异,粉土、砂土超孔隙水压力消散快,固结时间短,软粘土固结周期长,因此施工造成的工后不同沉降,导致差异沉降。

另外,软粘土尚存在蠕变特性,后期沉降量大,时间长,建成运营过程中会产生软大变形。国内某些修建于软土地层中的地铁线路已有类似工程问题产生。因此设计、施工中对于变形问题应引起足够的重视。

(三)地下水问题

区内地下水有上层滞水、浅层潜水和深部承压水三类,潜水位一般在地表下1~4m左右。承压水含水层为深部圆砾层,水位一般呈年周期性变化,承压水头一般在地表下6~7m左右。隧道掘进范围内软粘土为弱透水性地层,粉土、砂土则透水性好,其渗透系数一般为10-5~10-4cm/s。隧道掘进过程中必须及时衬砌,并做好注浆止水,以防粉土、砂土在水头差作用下产生流砂、管涌现象。地下水问题在地下车站基坑开挖中显得尤为突出,必须足够重视。由于开挖深度大,必须考虑下部承压水的影响。

(四)地下车站基坑开挖问题

由于地下车站多集中在闹市区,周环建筑物密集,地下管线多,环境条件复杂,且地下站埋深大,基坑深,一般均在10~20m左右;又土性条件差,地下水位高。基坑开挖时,坑壁土体在水土压力作用下不能自立,必须采取有效的支护措施,以免塌坍而影响工程安全及周围环境。按本地区经验,对于此类深大基坑,一般采用地下连续墙或排桩支挡,同时结合内支撑或锚拉,同时必须做好止水帷幕及排水工作。施工时必须对周边环境进行有效的监测工作。

由于地下车站多,基坑工程量大,一般常规方法均费用高,周期长,因此应尽量开发和利用新技术、新工艺,如新的桩型,新的止水、降水措施等。

(五)工程建设对环境的影响和防治

地下线路施工会引起周围土体内应力场发生变化,隧道基底土体产生回弹,软粘土的触变改变了土体的结构强度,降水引起土层再固结等,所有这些因素均会对周围环境产生影响。当隧道施工离地面建(构)筑物较近时,会引起坍落和沉降等不良影响。

盾构法施工之所以能在城市地下工程中广泛应用,主要是其可以将施工对周围环境的影响控制在很小的程度,但也不可能完全消除。伴随着盾构推进,一般也会发生地基变形,如开挖面上土水压力不平衡造成开挖面失去平衡,过大的排泥量,盾构推进对周边地层的扰动,地下水位的下降及渗漏水等等,所有这些影响均会在隧道上方一定范围产生松动区,从而引起地面沉降甚至坍落。

杭州地铁将修建在饱和粉土、砂土及软粘土中,为确保周围环境和隧道施工的安全,必须采用适当的施工工艺,控制推进路线和速率,尽量避免扰动周围土体。施工前应详细调查沿线建、构筑物的使用情况,特别是桩基及地下管线等情况,对影响范围内的邻近建、构筑物、地面道路及地下管线进行全过程动态监测,尤其象延安路、市心路区段等老城区,此项工作尤为重要。对可能受影响但又不能拆除的建(构)筑物应提前进行补强和保护。

(六)岩土工程勘察问题

“工程建设,勘察先行”,勘察是预测、预知,详细、全面、准确、可靠的地质勘察资料对地铁建设是极其重要的,在此基础上可以对盾构掘进过程中施工面前进方向可能遇到的不利因素进行超前预报,如地层、障碍物、地下水等情况能够预知,从而能够提前采取相应有效的措施,以保证施工顺利、安全地进行。

杭州地铁建设的岩土工程勘察须重点解决的两类地层是软粘土和粉土、砂性土,调查深度一般应在30m以内,但对地下车站部分则应加深。重点查明两类地层的分布情况及规律,它们的强度特性及变形特性,往复循环动荷载作用下的动力特性,粉土、砂土的颗粒组成及渗透性,软粘土的蠕变性,饱和粉土的地震液化特性等等。对地下水也应重点查明。

由于室内土工试验的局限性,地铁勘察应大量采用原位测试手段,如旁压试验、扁铲侧胀试验、十字板剪切试验、孔隙水压力量测及静探、动力触探等手段,以获取准确可靠的测试数据。

由于沿线有大量已建或在建的工程项目,对这些工程资料应充分收集、分析、筛选,加以利用,一可节约工程投资,二可最大限度提高勘察精度;同时,也可由此进行分析和采取有效的保护这些邻近建筑的措施。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

渗水试验

渗水试验是一种在野外现场测定包气带土(岩)层垂向渗透性的简易方法。在研究大气降水、灌水、渠水、暂时性表流对地下水的补给量时,常需进行此种试验。

试验方法主要有试坑法、单环法和双环法,其中,前两种方法多用于粗粒岩石和砂性土,后一种方法主要用于粘性土和其他松散岩层。

(1)试坑法:其方法是在试验层中开挖一个截面积不大(0.3~0.5m2)的方形或圆形试坑,不断将水注入坑中,并使坑底的水层厚度保持一定(一般为10cm 厚,图5-11),当单位时间注入水量(即包气带岩层的渗透流量)保持稳定时,则可根据达西渗透定律计算出包气带土层的渗透系数(K),即:

专门水文地质学

其中:

专门水文地质学

式中:Q为稳定渗入流量(m3/d);V为渗透水流速度(m/d);ω为渗水坑的底面积,即过水断面面积,m2;I为垂向水力坡度;Hk为包气带岩土层的毛细上升高度(m),可直接测定或用经验数据;Z为渗水坑内水层厚度(m);L为水从坑底向下渗入的深度(m),可通过试验前在试坑外侧3~4m外和试验后在坑中钻两个小径钻孔取土样,测定其不同深度岩土的含水量(湿度)值的变化,经对比后确定之。

在通常情况下,当渗入水到达潜水面后,Hk=0,又因Z小于L,故由(5-9)式计算求得的水力坡度近似等于1(即I≈1)。于是(5-8)式可写成:

专门水文地质学

(5-10)式说明,在通常条件下,包气带土层的垂向渗透系数(K),实际上等于渗入水在包气带土层中的渗透速度(V),即等于试坑底单位面积上的渗透水量。

由于试坑法直接从试坑中渗水,未考虑渗入水向试坑以外土层中侧向渗入的影响(图5-11),故所求得的K值常常偏大。

(2)环渗法:为了克服试坑法侧向渗水的影响,常采用环渗法,环渗法有单环法和双环法。其中单环法是在试坑中嵌入一个铁环(直径约35.75cm,高一般为0.5m),以减少侧渗,提高精度,双环法的渗水试验装置如图5-12所示,整个装置置于试坑中,装置由内、外圆环及马氏瓶组成。内外环间水体下渗所形成的环状水围幕即可阻止内环水向侧向渗透,使其竖直渗入,以便用内环渗水资料更精确的计算渗透系数(K),马氏瓶为定水头自动给水装置,为防止冲刷,环内还应铺设2cm厚的砾石层。试验时,用两瓶分别向内、外环注水,并记录渗水量,直至流量稳定并延续2~4h,即可停止注水,此时通过内环的稳定渗透速度,就是包气带岩石的渗透系数,即K=V。一般双环法的精度高于单环法。

在野外进行渗水试验时,为了说明试验过程和渗透速度的变化情况,一般要求在试验现场绘制渗透速度(V)随时间(t)变化的过程线(图5-13),其稳定后的V值,即为包气带岩土层的渗透系数(K)。

图5-11 试坑渗水试验示意图

图5-12 双环法试坑渗入试验装置图

1—内环;2—外环;3—自动补充水瓶;4—水量标尺(单位为m)

由于水体下渗时常常不能完全排出岩层中的空气,对渗水试验结果有一定影响。

 岩土工程检验与监测

岩土工程检验与监测主要有两个方面的任务:一是实现对岩土工程施工质量的控制;二是了解岩土施工的效果,为进一步的岩土体利用提供依据。岩土工程检测与岩土工程勘察阶段的试验测试相比较有相同之处,也有明显的差别。相同之处,在于两者都是要通过试验测试来定量了解工程岩土体的工程特性;不同之处在于,前者的测试对象是处理加固之前的岩土体,目的是为岩土工程设计提供依据,而后者的测试对象是处理加固之后的岩土体,目的是控制岩土工程施工的质量和检验施工处理的效果。从两者的相同之处可知,岩土工程检测中的许多测试方法与岩土工程勘察中的测试方法相同,例如,岩土体原位静载荷试验既是岩土工程勘察中测试地基土层承载能力的重要测试手段之一,也是岩土工程检测中测试处理加固后的复合地基和桩基础的重要手段。但是,经过处理加固之后的工程岩土体与处理加固之前的岩土体相比会有很大变化,处理加固后的岩土体常常是在原来天然岩土体的基体上增加了一些人工材料和功能构件。例如,在洞室围岩支护时可能会使用锚索加固围岩,并构筑混凝土衬砌进行支护。这时,岩土工程检测就要对锚索对围岩的锚固力是否能够达到设计要求进行测试,同时还要检测混凝土衬砌质量是否能够满足设计要求。又如,因地基土体不能满足上部结构对地基变形或承载力的要求而使用桩基础时,岩土工程检测就必须对桩基础的承载力和完整性进行检验测试,以确保桩基础能够达到设计所预定的功能。可见,岩土工程检测中的试验测试常常需要延拓到工程岩土体之外。

除岩土工程勘察中的常规试验测试外,岩土工程检测中经常开展的监测和测试工作主要有桩基检测、地基变形观测、边坡变形监测、地下洞室围岩观测等。

一、桩基检测

随着城市建设规模的日益扩大,采用桩基改善地基土体的承载能力已经成为较为普遍的工程方案。桩基检测的主要内容包括桩基承载力和桩身完整性两个方面。对护坡桩、抗滑桩需要进行水平抗力测试,有时也需要进行桩的抗拔力测试。然而,大量进行的主要是作为承受上部建筑荷载的桩基竖向承载力检测。

桩基检测的主要方法有钻孔取芯、静载荷试验、高应变动测、低应变动测和声波透射测试等。静载荷试验是工程地质测试中的常规手段之一,也是最直接、最可靠的桩基承载力测试方法。然而,载荷试验方法费用高、时间长,只能进行少量的抽测。尽管近年来出现了Osterberg试桩新方法,但仍然受成本限制,难以达到理想的检测率。因此,便捷的桩基动测技术在工程检测中得到了推广应用。近代桩基动测技术是以波动理论为基础发展起来的。20世纪30年代,D.V.Isaacs首先提出用一维波动方程描述桩顶受到桩锤冲击后沿桩体的波传播。1960年E.N.Smith发表了著名论文“打桩分析的波动方程法”,使波动方程分析方法开始进入实用阶段。1972年,湖南大学周光龙教授提出了桩基动测的动参数法,推动了我国桩基动测方法的研究。动测方法既可以检测桩基承载力又可以检测桩身完整性,克服了载荷试验只能测试桩基承载力的局限。高应变动测采用自由落锤(锤重应大于单桩极限承载力的1%)冲击桩顶,在桩体内部产生沿桩长方向传播的应力波,利用加速度传感器和力传感器测定桩顶附近某一桩截面上的质点振动加速度和桩身受力,然后利用波动方程分析拟合求出桩身各个截面的轴力和桩侧摩阻力。低应变动测采用较轻便的手锤在桩头激发波动,根据在桩顶设置的传感器所测定的桩基振动和波动信号推算桩基承载力和判断桩身完整性。大直径桩基的桩身质量检测多采用声波透射法。声波测试前,根据桩截面的大小对称埋设2~6根钢管,并保证钢管相互平行。测试时,发射探头在管内某一深度上发射超声波,接受探头在对称的钢管中同一深度上接受穿透过来的波动信号,由此测定桩身材料的声速。根据声速的大小和变化即可对桩身质量做出判断。

二、地基变形及边坡变形观测

变形观测的主要任务是定期对设置在被测目标上的观测点进行重复观测,以求得观测点的点位或高程随时间的变化量,为评价岩土工程施工质量、了解地基与边坡的稳定性和设计参数的合理性提供技术依据。

地基变形观测工作主要包括基坑回弹观测、基坑侧向变形和基坑开挖对邻近建筑物的影响观测、建筑物沉降和位移观测、场地沉降观测等。地基变形观测主要有以下几方面的意义:一是估计地基可能产生的再压缩变形,以改进基础设计;二是估计基坑开挖卸荷对邻近建筑物的影响,以便及时采取保护措施;三是检测支护结构的稳定性,保证工程施工的安全;四是通过地基变形观测积累工程经验,为地基长期变形的反演分析提供依据。

边坡变形观测包括地表变形监测、钻孔变形监测以及边坡岩土体声发射监测等内容。其中钻孔变形监测项目主要有:沉降、倾斜、挠曲以及地下水位或渗透压力等。边坡变形观测的主要目的是及时掌握边坡的稳定状态,为边坡稳定性的发展趋势的预测和边坡岩土体治理方案的制定提供依据。

三、地下洞室围岩观测

地下洞室开挖前,岩体处于应力平衡状态。洞室开挖破坏了原始应力平衡状态,随着围岩变形的发展,应力发生重分布。实践表明,利用地下洞室围岩观测所提供的信息,及时调整施工方案和加固措施,预测预报险情,是地下工程施工行之有效的方法和途径,这也正是所谓新奥法施工的特征。近年来,在信息及计算机技术发展的基础上有人又提出了智能岩土工程的新思路,应该说是对新奥法的进一步发展。地下洞室围岩观测主要有地下洞室围岩收敛观测、钻孔岩体轴向位移和横向位移观测、锚杆应力观测以及岩体锚固荷载观测及地下水渗透压力观测等内容。

水利工程质量检测岩土工程类检测所需仪器设备

要求岩土工程勘察甲级资质的企业应当具备以下技术设备:

1、钻机5台(标准贯入、动力触探设备相应配套)或有固定的工程勘察劳务资质(工程钻探)企业队伍。

2、室内试验设备需满足下列两种技术装备配备要求之一:

(1)高压固结仪10台,中低压固结仪20台,三轴剪力仪2台,四联直剪仪、无侧限抗压仪、渗透仪各1台;

(2)膨胀仪器、万能材料试验机、压力试验机、岩石三轴仪各1台。

3、原位测试仪3台:载荷试验设备、静探设备、旁压设备、岩石点荷载试验设备、现场剪切设备等设备中任选3类。

4、物探测试检测设备2台:波速检测仪、工程检测仪、地下管线探测仪等设备中任选2类。

5、经纬仪2台、水准仪5台,并提供仪器的检定证书或校准证书。

6、计算机等其它仪器设备,且软件配套齐全。

0条大神的评论

发表评论